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Abstract—The natural gas tightly correlates with our everyday life. However, driven by gray incomes, some users are prone to stealing
gas by refitting the equipment without permission. Especially for the boiler room users in winter, this phenomenon appears more
rampant. Traditional gas-theft detection methods highly rely on the on-site inspection, where exists ineffective and randomness. With
the rapidly deployed IoT sensors, we can collect real-time gas consumption data to analyze users’ behavior patterns, where the
gas-theft suspects could be discovered early and accurately. In this paper, we propose a data-driven approach, named SVOC, to
detect gas-theft suspects among boiler room users. Our approach consists of a scenario-based data quality detection algorithm, a
deformation-based normality detection algorithm, and an One-Class Support Vector Machine (OCSVM) based anomaly detection
algorithm. Specifically, considering the temporal proximity between the gas consumption and the outdoor temperature, the normality
detection algorithm adopts a similarity-based deformation correlation to detect normal boiler room users out of abnormal ones. Then,
we employ OCSVM as the anomaly detection algorithm to capture various features across multiple data sources, aiming to distinguish
gas-theft suspects from the remaining irregular users. Here, the detected normal and abnormal users are fed into the OCSVM for
training and prediction, respectively, which can overcome the label scarcity problem. We conduct extensive experiments on a real-world
dataset during one heating season. The results demonstrate distinct advantages of our approach over various baselines. We have
developed a real-time system on the cloud, providing daily gas-theft suspects for gas companies.

Index Terms—Gas-Theft Suspect; Normality Detection; Anomaly Detection; Urban Computing

F

1 INTRODUCTION

NATURAL gas is tightly relevant to millions of people’s
daily life [1]. However, driven by the gray income, i.e.,

to report less charged gas consumption than the used actual
volume, some users are prone to stealing gas by refitting
installations or pipelines without permission. It is illegal and
dangerous, which is likely to harm the economic interests of
gas companies and endanger public safety. Especially for
the boiler room users for supplying heating for inhabitants
in winter, the phenomenon of gas-theft appears more ram-
pant [2]. Since in northern China cities, from November to
March, many boiler rooms supply heating for inhabitants by
consuming natural gas, where the cost of a boiler room is up
to one million RMB over the entire heating period. Thus, gas
companies need to fight against gas-theft behaviors timely
and effectively for preventing illegal activities.

The traditional means of gas-theft detection are mainly
carried out by internal inspections along with measurement
and maintenance, which require the on-site examination
by the staff of gas companies. As shown in Figure 1(a), a
maintainer is manually checking the condition of meters
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(a) Traditional method (b) Data-driven method

Fig. 1. Gas-theft suspects detection methods.

and calculating the quantity difference between supply and
marketing. To finish all these procedures, it costs consid-
erable human resources while still exists the problem of
inefficiency and delay caused by the random inspection
without specific target suspects.

As shown in Figure 1(b), with the rapid development
of IoT gas meter, we can collect the gas consumption data
of boiler rooms by remote data transmission. Hence, it is
likely to detect boiler room gas-theft suspects out of normal
users using a data-driven approach, considering that dif-
ferent users’ gas consumption patterns. Thus, the gas-theft
suspects could be discovered early and accurately while
reducing the cost of workforces. Nevertheless, to identify
gas-theft suspects based on their daily gas consumption
records, we encounter some challenges:

Firstly, the gas consumption of boiler rooms is diverse
and complicated. As boiler rooms serve different end-users,
they will present various gas consumption patterns. The
boiler rooms of community residents will supply heating
for 24 hours without interruption, while users of shopping
malls only work during business hours. Besides, users of
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office buildings are more complicated: some run during the
weekend, yet others do not. Moreover, the gas consumption
of a boiler room is not constant and may have some fluc-
tuations. Sometimes, the boiler room may shut down for
the equipment maintenance. Besides, it could be decreased
deliberately by users to save the fee paid for heating. Due to
such complex actual situations with diverse gas consump-
tion patterns, a normal boiler room user’s fluctuation is thus
likely to be misjudged as anomalies.

Secondly, gas-thieves only account for a small fraction
among all boiler room users, and the caught gas-thieves are
scarce. Typically, a gas-stolen event usually appears with
a low probability, and the gas company can only catch a
few of them with the traditional on-site inspection method.
There are merely 0.23% users who have been caught as gas-
thieves during one heating season regarding the data we
obtain. With labels in such limited quantity and imbalance
problems, it requires an effective anomaly detection method.
Furthermore, there is no specific definition of normal and
irregular gas consumption patterns before. Consequently, it
is hard to identify useful features for distinguishing gas-
theft suspects from normal users, as well as to build a robust
gas-theft suspects detection approach.

To address the challenges above, we propose a data-
driven approach, named SVOC, to detect gas-theft suspects
of boiler rooms. Our approach contains three components: 1)
scenario-based data quality detection, which excludes zero-use
& data-missing users and filters severe fluctuation and low
usage users; 2) deformation-based normality detection, which
detects the normal and abnormal boiler rooms users by
calculating deformation similarity; 3) OCSVM based anomaly
detection, which discovers gas-theft suspects among abnor-
mal users considering various gas usage characteristics.
Inspired by the domain knowledge of gas supply and usage,
our method has more interpretations in the actual situation.
The main contributions are as follows:

• To the best of our knowledge, this is the first data-
driven approach to detect gas-theft suspects of boiler
rooms. Thus, the detection will no longer depend on
the human experience, but the rules learned from
gas consumption data. Therefore, it can dramatically
reduce the cost of workforces and increases the effi-
ciency of gas companies.

• Considering the temporal proximity between gas
consumption and outdoor temperature, we propose
a deformation-based normality detection algorithm
to detect normal and abnormal users, markedly de-
creasing the scope of suspects.

• Based on the separated normal and abnormal users,
we propose an OCSVM based anomaly detection
algorithm to capture multiple characteristic factors
for identifying gas-theft suspects. It is seamlessly
connected to the normality detection algorithm for
overcoming the label scarcity problem.

• We conduct experiments on a real-world dataset
over one heating season, where the results show the
distinct advantages of our approach over baselines.
Besides, we discuss the detected anomalies in realis-
tic situations and state the reason why there are two
anomaly labels undetected.

• We have developed a real-time system on the cloud,
entitled GasShield, providing the daily user classi-
fication of boiler rooms, especially for the gas-theft
suspects. Thus, the potential suspects could be dis-
covered in the early stage with higher accuracy.

2 OVERVIEW

2.1 Problem Formulation

For a list of boiler rooms users R, given the boiler room
attribute data {AttR}, gas consumption data {GastR}Tt=1,
and the temperature data {Tempt}Tt=1, where T is the
time length of day, we aim at detecting gas-theft suspects
Rsuspect out of all boiler room users R.

2.2 Overview

Figure 2 shows the framework of our proposed data-driven
approach SVOC for detecting gas-theft suspects of boiler
rooms, considering the gas consumption data, boiler room
attribute data, and outdoor temperature data. SVOC con-
sists of three components: a scenario-based data quality
detection algorithm, a deformation-based normality detec-
tion algorithm, and an OCSVM based anomaly detection
algorithm. Specifically, in the scenario-based data quality
detection algorithm, we analyze the gas consumption data
to exclude data-deficient (data-missed and data-zero) users
and data-abnormal (severe fluctuations and continuous low
consumption) users. Among them, there may exist some
potential gas-theft suspects. Considering the strong tem-
poral proximity between daily gas consumption and daily
outdoor temperature, in the deformation-based normality
detection algorithm, we first analyze the consumption con-
tinuity and transform the data of gas consumption as well
as temperature, then calculate the deformation correlation
to detect out normal boiler rooms. In this way, all boiler
rooms can be separated into normal ones and the abnormal
ones. The abnormal boiler rooms can be further classified
into the gas-theft suspects and users with irregular patterns.
In the anomaly detection algorithm, we extract character-
istic features across multiple data sources and then feed
these extracted features into the OCSVM model. With the
detected normal boiler rooms as positive samples to train
the model, we can distinguish the gas-theft suspects from
irregular users after feeding the detected abnormal users
for prediction. Thus, normality and anomaly algorithms are
seamlessly connected to overcome the label scarcity problem
and achieve better suspects detection accuracy.

Fig. 2. The framework of our proposed approach SVOC.
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3 METHODOLOGY

In this section, we elaborate on our proposed approach
SVOC: a scenario-based data quality detection algorithm,
a deformation-based normality detection algorithm, and an
OCSVM-based anomaly detection algorithm.

3.1 Scenario-based Data Quality Detection
The collected gas consumption data exist some data prob-
lems due to the realistic conditions, mainly consisting of 1)
missing data; 2) zero consumption; 3) severe fluctuations; 4)
continuous low consumption. Besides, some gas-thefts are
hidden among these users with the data-quality problem,
reporting the error readings. With such bad data quality,
the detection algorithms can not help to detect gas-thefts.
For achieving high-quality data, we detect and filter boiler
rooms users having such one type of data quality issues.

(a) Data miss rate distribution (b) Data zero rate distribution

Fig. 3. Statistics of gas consumption data quality.

First, we detect data-missing users. As shown in Figure
3(a), the overwhelming majority of boiler room users hold
the miss rate of daily gas consumption smaller than 10%.
While gas-theft users usually destroy gas equipment, which
causes meter readings missed with higher frequency. So we
exclude users whose data miss rate is higher than 10%.

Second, we detect zero-consumption users. As shown
in Figure 3(b), the distribution of zero rate appears two
obvious plunges, the first one after 10% and the second one
after 70%. The high proportion of zero readings indicate that
either longtime continuous or frequent irregular shutdown
has occurred. It conflicts with normal operation patterns of
boiler rooms and is highly suspicious of stealing gas. So we
exclude users whose data zero rate is higher than 70%.

Third, we detect users whose gas consumption fluctu-
ates severely. For the boiler room shown in Figure 4(a),
spikes that exceed its usual gas consumption level appear
in records, where extreme values are normally caused by
meter failure. In this condition, records fluctuate regardless
of actual gas consumption, which disturbs the analysis of
overall patterns. So we exclude users whose maximum daily
gas consumption is ten times greater than the median.

(a) Severe fluctuations (b) Continuous low consumption

Fig. 4. Illustration of users having data quality problems.

Fourth, we detect users whose gas consumption is con-
tinuously low. For the boiler room shown in Figure 4(b),
after some time point, its gas consumption remains com-
paratively lower than its former level. It indicates that this
boiler room either operates at a low-temperature level or
has fraudulent behaviors to report less gas consumption.
Both situations are evidently abnormal and easy to identify
in this component. So we exclude users whose daily gas
consumption is lower than half of the maximum for more
than 7 days (one week).

Here, all thresholds are defined based on the data dis-
tribution of realistic conditions. Thus, data-deficient (data-
missed and data-zero) boiler room users and data-abnormal
(severe fluctuations and continuous low consumption)
boiler room users can be quickly detected and removed,
providing higher-quality data for the following detection
algorithms. Besides, we warn these filtered boiler rooms as
one type of anomaly.

3.2 Deformation-based Normality Detection
As shown in Figure 5(a) and Figure 5(b), with the integrated
analysis on gas consumption data and outdoor temperature
data, we find that the daily gas consumption is strongly
negatively related to the daily outdoor temperature. When
it becomes colder, the gas consumption will increase in the
upcoming days to offer the external heat supply, and vice
versa [3]. Thus, it is important to take the opposite outdoor
temperature as a reference. If the gas consumption curve
fits the reference well, we can infer that the boiler room is
normal. While for the remaining boiler rooms, we can judge
them as abnormal users.

(a) Original (b) Opposite

Fig. 5. Daily gas consumption and daily temperature.

Considering the gas patterns of normal boiler rooms, we
propose a deformation-based normality detection algorithm
(TGSV) for detecting normal boiler rooms, as shown in
Figure 6. It consists of three steps: continuity processing,
data transformation, and normality detection. In detail,
the continuity processing classifies boiler rooms into the
weekday mode or the holiday mode and then processes
the gas consumption of these two types of boiler rooms
separately. Next, with the wavelet transformation, the phase
calibration, and the min-max normalization, we transform
the gas consumption data and temperature data into two
cleaned time series by denoising and eliminating differ-
ences. Afterward, we calculate the deformation correlation
with the defined temperature-gas shape variation to filter
out normal boiler rooms, while the rest are abnormal. In
this way, normal users can be excluded, which dramatically
decrease suspects’ scope and make the following anomaly
detection algorithm more targeted.
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Fig. 6. Framework of normality detection algorithm.

3.2.1 Continuity Processing
Typically, most boiler rooms present a similar pattern re-
garding the opposite of outdoor temperature. However, as
illustrated in Figure 7(a), it has regular sharp decreases
on weekends compared with that on weekdays. The rea-
son is that some boiler rooms only supply heating during
weekdays. Moreover, as shown in Figure 7(b), during the
Chinese official holidays, especially New Year’s Day and
the Spring Festival, the gas consumption drops significantly.
That is also reasonable, as some enterprises will close during
holidays. Without such knowledge, these fluctuations will
be inclined detected as anomalies.

(a) On weekend (b) On holidays

Fig. 7. Gas consumption decreased during troughs.

To avoid misjudging such reasonable fluctuations on
weekends and holidays, we process the boiler rooms’ gas
consumption continuity. Firstly, we regard the opposite of
daily outdoor temperature as a reference. Secondly, we cal-
culate the ratio between average daily gas consumption on
weekdays and that on weekends, separating users into the
weekday-operating mode and everyday-operating mode. If
the ratio is larger than a threshold (e.g., 1.3), we infer the
boiler room is the weekday-operating mode. Otherwise, it
is of the everyday-operating mode. After that, we set daily
gas consumption on weekends as null for boiler rooms
of weekday-operating mode. While during Chinese official
holidays, we set the daily gas consumption of all boiler
rooms as null. By this means, further analysis will be more
accurate with misjudgments having been reduced.

3.2.2 Data Transformation
After continuity processing, some small short-term fluctu-
ations still exist on the gas consumption data and outdoor
temperature data. Besides, we notice some gas consumption
delays compared with the temperature, as users usually
need several days to adjust in response to the change of
temperature. Moreover, the scale and the dimension of the
two data sources are different. Hence, we transform the gas

consumption data and the temperature data to denoise and
eliminate these differences using three steps: wavelet trans-
formation, phase calibration, and min-max normalization.

For denoising the small short-term fluctuations of gas
consumption and outdoor temperature data, we choose
a Mallat decomposition and reconstruction based wavelet
transformation method [4], which is adaptive enough to
represent localized signals in both the time and the fre-
quency domain. Specifically, we conduct a multilevel 1-D
discrete wavelet transformation for each time series firstly.
The energy of dominating features will then be concentrated
in a few large-magnitude wavelet coefficients, while noises
will disperse on some small-magnitude coefficients. After
that, we can remove noises while retaining useful infor-
mation by thresholding coefficients. Here, we choose the
Haar wavelet base [5] with a soft threshold function and
set the decomposition level as 4 to approximate the optimal
estimation. Finally, we obtain the denoised time series by
reconstruction with the inverse wavelet transformation on
the wavelet base and filtered coefficients. As shown in Fig-
ure 8(a), the processed time series of the opposite outdoor
temperature is more smooth than the original one.

(a) Wavelet denoising (b) Phase correction

Fig. 8. Illustration on data transformation.

For rectifying the response delay, we implement the
phase calibration on the opposite temperature rather than
on the gas consumption for reducing computation complex-
ity. As shown in Figure 9(a) and 9(b), the similarity between
gas consumption and temperature varies with shifting the
temperature forward and backward on different days. It can
be seen that when the temperature is shifted forward one
day, the similarity measured by both the Euclidean distance
and the Pearson Correlation reaches the peak. Thus, we
impose the phase calibration of one day forward on the
reverse daily temperature. As shown in Figure 8(b), we
obtain a rectified time series of temperature to offset the
time delay of the gas consumption after phase calibration.

(a) Reciprocal of L2 distance (b) Pearson correlation

Fig. 9. Similarity under different days shift.

Before measuring the similarity between gas consump-
tion and temperature, it is worth noting that they are of dif-
ferent dimensions. Moreover, the scale of the gas consump-
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tion of each boiler room varies. Hence, it is supposed to
normalize all the data into the same scale firstly, eliminating
the dimension difference. We construct a pair of temperature
series and gas consumption series for each boiler room, then
perform the min-max normalization to scale them uniformly
into [0, 1]. In this way, we obtain two time series with the
same dimension and scale.

3.2.3 Normality Detection
After the data transformation, for each boiler room r, we
get a pair of denoised and shifted time series of the daily
gas consumption Gr and the opposite daily outdoor tem-
perature Tr . If the curve of daily gas consumption fits the
reference curve well, the boiler room can be inferred to
be normal. For detecting such normal users, we define a
temperature-gas shape variation ShapeV ar in the Equation
1. It measures the deformation correlation between the two
time series. Its two components Φ(CORT ) and Diff are
defined in Equation 2 and Equation 5, which characterize
the trend consistency and the value deviation respectively.

ShapeV artr = Φ(CORT t
r (Gr, Tr))×Diff tr(Gr, Tr) (1)

Φ(CORT t
r (Gr, Tr)) = |1− CORT t

r (Gr, Tr)| (2)

CORT t
r (Gr, Tr) =

∑t
d=t−ω ∆Gd

r∆T d
r√∑t

d=t−ω(∆Gd
r)2

√∑t
d=t−ω(∆T d

r )2
(3)

∆Gd
r = Gd

r −Gd−1
r ; ∆T d

r = T d
r − T d−1

r (4)

Diff tr(Gr, Tr) =

∑t
d=t−ω |Gd

r − T d
r |

ω
(5)

The component Φ(CORT ) reflects how severely the
gas consumption deviates from the reference, which can
represent the trend consistency. Unlike the Pearson coef-
ficient, CORT represents the first-order temporal correla-
tions, where the strength of monotonicity and the closeness
of growth rates are both considered [6]. Moreover, the
component Diff portrays to what extent values of the gas
consumption and the temperature diverge, namely their
value deviation. Here, for one boiler room, to calculate its
ShapeV artr at each time slot t, we consider recent influences
inside pre-partitioned sliding windows, of which the size ω
of both Φ(CORT ) and Diff is set as 3.

With the calculated ShapeV arr , we can set a threshold
to judge whether a boiler room is normal or not. Since
the larger the ShapeV artr is, the more severely the gas
consumption deviates from the normal reference level. As
long as ShapeV arr on at least one timestamps surpasses
the threshold, the boiler room is judged as an anomaly.
Figure 10(a) shows a detected normal boiler room, of which
the ShapeV arr is entirely below the threshold. Figure 10(b)
shows an abnormal boiler room, which appears an obvious
bias in comparison with the reference curve on surpassing
several times. The threshold of ShapeV arr is set by con-
sidering both gas-theft labels and expert experience of the
upper bound proportion of boiler room users who can be
suspicious of stealing gas. The principle is that, with all gas-
theft labels being detected, the least abnormal users will be
reported. Based on it, normal boiler rooms can be excluded,
which dramatically decreases the suspects’ scope and makes
the following detection more targeted.

(a) Normal user (b) abnormal user

Fig. 10. Results of normality detection.

3.3 OCSVM-based Anomaly Detection
With the deformation-based normality detection algorithm,
we can exclude normal boiler rooms from abnormal ones.
However, many normal users, consuming the natural gas
irregularly at times, maybe misclassified as suspects. For
distinguishing gas-theft suspects from irregular users, as
shown in Figure 11, we propose an OCSVM based anomaly
detection algorithm to capture multiple characteristic fac-
tors from different data sources. Specially, we employ the
detected normal boiler rooms as the positive samples to
train the OCSVM model. And then, we predict the detected
abnormal users with the trained OCSVM to differentiate
suspected users. Here, three categories of features are ex-
tracted to depict the characteristics of boiler rooms. They
are boiler room attribute features, gas consumption features,
and temperature-gas joint features. In this way, gas-theft
suspects can be detected more accurately.

Fig. 11. Framework of anomaly detection algorithm.

3.3.1 Boiler Room Attribute Features
We extract six descriptive attribute features of boiler rooms
listed in the first category of Table 1. In detail, the feature
Industry Types describes types of heating entities, including
offices, restaurants, business, and accommodation. The fea-
ture Building Types describes types of constructions, cover-
ing industry, public, civilian, and public-civilian shared. Be-
sides, Management Mode indicates whether the boiler room
is outsourced. As shown in Figure 12(a) and 12(b), the
management mode appears a strong distinction between
gas thefts and normal users. The majority of gas thefts are
outsourced, while normal users are mainly self-operated.
The reason behind it is that outsourcing operators are less
restricted and more motivated to steal gas driven by gray
profits. Moreover, a boiler room is usually characterized by
the number of boilers, heating area, and heating level, which
are denoted by features Number of Boilers, Heating Area and
Total Vapor Ton, respectively.
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(a) Normal user (b) Abnormal user

Fig. 12. Management Mode.

3.3.2 Gas Consumption Features

We extract seven statistical gas consumption features listed
in the second category of Table 1. The Interval Distribution of
Gr feature presents the value distribution of daily gas
consumption. For each boiler room, we map the daily con-
sumption into 5 intervals: (min, µneg−σneg), (µneg±σneg),
(µneg + σneg, µpos − σpos), (µpos ± σpos) and (µpos +
σpos,max). Each dimension of the feature means the proba-
bility of corresponding interval. Thus, boiler room users can
be clustered into two groups: the steady and the vibrating
one, shown in Figure 13(a). For the steady group, their gas
consumption mainly concentrates in the large-value interval
while with minor probability in the small-value intervals.
While for the vibrating group, they are turned down more
often, so their consumption rises and falls.

Moreover, the Hourly Shutdown Ratio feature and Daily
Shutdown Ratio feature describe the ratio of time slots when
the gas consumption is turned down below a threshold.
As illustrated in Figure 13(b), the overwhelming majority
of boiler rooms have tiny shutdown ratios either in an
hour or in a day. For each boiler room, the threshold is
as 10% of its max daily gas consumption. Similarly, the
feature Daily Continuity depicts the continuity of hourly gas
consumption in the day. We calculate the proportion of days
on each hour when the boiler room is shut down and then
cluster all users into two groups: continuous and noncon-

TABLE 1
Extracted features for OCSVM.

Category Feature Description Dimension
Industry Types 4
Building Types 4

Boiler Room Management Mode 2
Attribute Number of Boilers 1
Features Heating Area 1

Total Vapor Ton 1
Interval Distribution of Gr 5

Daily Continuity 2
Gas Hourly Shutdown Ratio 1

Consumption Daily Shutdown Ratio 1
Features Mean of Gr 1

Mean of ∆Gr 1
STD of ∆Gr 1

Distribution of ShapeV ar 5
Temperature Mean of ShapeV ar 1

- Gas STD of ShapeV ar 1
Joint DTW from Gr to Tr 1

Features Mean of ∆Gr/∆Tr 1
STD of ∆Gr/∆Tr 1

Fig. 13. Gas Consumption Features.

tinuous. As shown in Figure 13(c), the continuous group
has few shutdowns in the day, while the noncontinuous one
turns down their consumption more frequently, especially
out of the working time. Besides, we extract the feature
Mean of Gr and the features Mean of ∆Gr and STD of ∆Gr ,
where reveals the magnitude and sequential variation of gas
consumption of each boiler room.

3.3.3 Temperature-Gas Joint Features

We extract six temperature-gas joint features listed in the
third category of Table 1. The Distribution of ShapeV ar fea-
ture describes the ratio of abnormal days changing with
the incremental threshold. As illustrated in Figure 14(a), for
normal users, their ShapeV ar seldom exceeds thresholds.
While for abnormal ones, their ShapeV ar deviates from
the normal level more severely. The higher the threshold is,
the less abnormal is detected. The co-distribution of features
Mean of ShapeV ar and STD of ShapeV ar are displayed in
Figure 14(b), which is scattered symmetrically. The more
gas consumption deviates from the normal level, the larger
STD and the absolute value of the mean of ShapeV ar are.
Therefore, the STD, along with the larger positive Mean, is
higher than that with the negative ones.

Besides, Dynamic Time Warping (DTW) distance mea-
sures the similarity between two time series, where the
larger the DTW distance is, the less similar the two
time series are. The feature DTW from Gr to Tr for the gas
consumption Gr and the opposite outdoor temperature
Tr , its distribution can be seen in Figure 14(c). Apart
from the sole ∆Gr, we also calculate the normalized
daily average temperature difference, denoted by ∆Tr .
Considering the variation dependency between them, the
features Mean of ∆Gr/∆Tr and STD of ∆Gr/∆Tr are ex-
tracted. Their co-distribution and that of ∆Gr are alike. It
reveals that, for the majority of boiler rooms, the variation
of gas consumption obeys consistent laws, which is tightly
associated with that of temperature.

Fig. 14. Temperature-Gas Joint Features.
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3.3.4 One-Class Support Vector Machine
As we know, gas-thefts and normal users have different gas
consumption patterns, which can be revealed in the feature
space across different data sources. With the extracted fea-
tures representing the multiple characteristics, we can use
a machine learning method to reduce gas-theft suspects’
scope further and avoid classifying normal users as gas-
theft suspects. However, the percentage of confirmed gas-
thefts is meager over the whole boiler rooms, resulting in the
scarcity of labels and the data imbalance problem. Thus, it is
difficult to design a supervised algorithm for classification,
which may lead to significant false-positives. Luckily, we
have detected normal and abnormal boiler rooms from the
deformation-based normality detection algorithm, which
can be viewed as the pseudo label for designing a self-
supervised or one class classification model.

Here, we select the OCSVM model due to its model-
ing flexibility, computing efficiency, and detection accuracy.
OCSVM is widely used for anomaly detection, where is
trained on the data that has only one “normal” class while
do not have the label information [7], and then predict
which examples are unlike the normal examples, called
anomalies. With the detected normal and abnormal boiler
rooms, we can treat the normal boiler rooms as positive
samples to train the OCSVM model. Then, we predict the
abnormal boiler rooms to differentiate gas-theft suspects
from normal users with irregular patterns. From this per-
spective, the normal and anomaly detection algorithm are
seamlessly integrated, overcoming the label scarcity prob-
lem and achieving better accuracy.

More specifically, with the extracted features, OCSVM
adopt the rbf kernel function exp(−γ(‖ x − x

′ ‖)2) to
learn a decision boundary. It first maps the original features
into a high dimensional space corresponding to the kernel
function, and then separate them from the original one
using a decision boundary, which maximizes the distance
from this boundary to the origin [8]. For a new sample of
abnormal boiler rooms, if it falls on the same side of the
decision boundary where most training data fall, it will be
classified as a normal sample, otherwise as an anomaly. The
optimization of OCSVM is to solve the quadratic program-
ming problem, where tuning the parameters ν and γ.

3.4 Algorithm Psudo-code

Algorithm 1 outlines the proposed gas-theft suspects de-
tection approach. For the deformation-based normality de-
tection algorithm, we first use a wavelet transform and
phase calibration to pre-process the opposite of temperature
data (Lines 1-3). For each boiler room, we use continuity
processing and wavelet transform on the gas consump-
tion data and then calculate the deformation correlation
after min-max normalization (Lines 4-8). After that, we
detect the normal and abnormal boiler room users with the
calculated deformation correlation (Lines 9). For OCSVM
based anomaly detection algorithm, we first extract boiler
room features, gas consumption features and temperature-
gas joint features for users (Line 10-13). Then, we train the
OCSVM model using the detected normal users with the
extracted features and predict the gas-theft suspects with
the detected abnormal users (Lines 14-15).

Algorithm 1: Gas-Theft Suspects Detection (SVOC)
Input: List of all boiler rooms Rall; Gas consumption

data {GastR}Tt=1; Temperature data {Tempt}Tt=1;
Boiler room attribute data {AttR};

Output: List of gas-theft suspects Rsuspect;
1 T i = Set opposite({Tempt}Tt=1) ;
2 Tw = Wavelet Transform(T i) ;
3 T p = Phase Calibration(Tw) ;
4 for each boiler room r in Rall do
5 Gc

r = Continuity Processing({Gastr}Tt=1) ;
6 Gw

r = Wavelet Transform(Gc
r) ;

7 Gr , Tr = Min-max Normalization(Gw
r , T

p) ;
8 Dr = Deformation Calculation(Gr, Tr) ;

9 Rnor, Rabn= Normality Detection({Dr}Rr=1) ;
10 for each boiler room r in Rall do
11 F b

r = Boiler Feature Extraction(Attr);
12 F g

r = GasConsumption Feature Extraction(Gr) ;
13 F t

r = Temperature Feature Extraction(Tr, Gr) ;

14 Model = OCSVM Train({F b
r , F

g
r , F

t
r}Rnor ) ;

15 Rsuspect = OCSVM Predict(Model, {F b
r , F

g
r , F

t
r}Rabn) ;

4 EXPERIMENTS

4.1 Settings

4.1.1 Datasets
We conducted experiments on a real-world dataset in Bei-
jing, which detailed in Table 2. The dataset is collected by
three different gas companies, with 3,035 boiler rooms and
11 labeled gas-thefts. Each boiler room has the daily gas
consumption data and the static attribute information. We
also use daily outdoor temperature data for reference. For
both gas consumption data and temperature data, the time-
span lasts from November 15, 2018, to March 15, 2019, where
cover one whole heating season.

Though the caught gas thefts are limited, we still can
not generate some synthetic gas-theft labels, as the thefts
only can be judged by on-site inspections. Besides, it is
not easy to set criteria of gas-thefts regarding the degree
and anomalies pattern. Thus, this gas-theft suspect detection
task has limited labels as ground truths. For evaluation, we
adopt cross-validation on three subsets, where we detect
gas-theft suspects for each subset by tuning the hyper-
parameters on the other two subsets.

4.1.2 Parameter Setting
• Scenario-based data quality detection algorithm. The

threshold of missing rate is set to 0.1. The threshold
of zero rate is set to 0.7. The threshold of reasonable
maximum daily gas consumption is set to ten times

TABLE 2
Details of the datasets

Boiler Room Attributes

Company #. boiler rooms / #. thefts
A 584/4
B 781/2
C 1670/5

Total 3035/11
Time Slot Time Span

Gas Consumption Data Daily 2018/11/15 - 2019/03/15
Temperature Data Daily 2018/11/15 - 2019/03/15
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of its own median. The threshold of low consump-
tion is set to half of its own maximum, and ”contin-
uously” means that it appears more than 7 days.

• Deformation-based normality detection algorithm.
For continuity processing, the ratio between the
weekday and weekend consumption is set to 1.3. For
wavelet transformation, the level of decomposition
is set to 4. For the phase calibration, we shift the
opposite temperature time series 1 day forward. For
normality detection, the size of sliding window is
set to 3. The threshold of TGShapeV ar is set to
0.64 uniformly for all the three datasets, based on
both gas-theft labels and expert knowledge on the
proportion of suspicious users.

• OCSVM based anomaly detection algorithm. The
parameters ν and γ for each subset are set by grid
search. For Company A, ν = 0.4 and γ = 1e− 4. For
Company B, ν = 0.3 and γ = 1e − 7. For Company
C, ν = 0.1 and γ = 1e− 5.

4.1.3 Baselines
• LOF [9]: LOF detect outliers by computing the local

density deviation and considering the samples with
a substantially lower density as outliers. The number
of neighbors is set to 20 in our experiment.

• iForest [10]: Isolated Forest is a tree-ensemble based
method for identifying anomalies instead of normal
observations. The number of base estimators in the
ensemble is set to 1000 in our experiment.

• DBSCAN [11]: DBSCAN is a density-based cluster-
ing method, where points lie in low-density regions
are regarded as outliers. Here, MinPts is set to 4 and
eps is set to 0.75.

• DONUT [12]: Donut is an unsupervised anomaly
detection algorithm based on VAE, targeting for
seasonal KPIs (time series for monitoring machine
services). Parameters are set as [12] suggests.

• DAGMM [13]: DAGMM combines the deep auto-
encoder and the Gaussian mixture model for un-
supervised anomaly detection. Here, the number of
training epochs is set to 200, the size of mini-batches
256 and other parameters are set as [13] suggests.

• SRCNN [14]: SRCNN is a state-of-the-art method
for time series anomaly detection by combining the
SR and CNN. It adopts the Spectral Residual in the
domain of computer vision to strengthen anomalies.
Parameters are set as [14] suggests. Positive samples
are gas-theft labels and negative samples are selected
randomly from all other users.

Apart from the above baselines compared with our
SVOC (TGSV&OCSVM), we also compare TGSV with pop-
ular similarity measurements and compare OCSVM with
common models adopted in utility fraud detection.

4.1.4 Evaluation Metrics
We use precision (PR) and recall (RC) for evaluation. Due to
the scarcity of labels, the detected anomalies should cover
labels as many as possible and avoid false alarms. Therefore,
with the same RC nearly equal to 1, the higher the PR is, the
better the model performs. Also, we use #. detected suspects
/ #. hit thefts for demonstration.

4.2 Performance Comparison

4.2.1 Comparison with Baselines

As Table 3 illustrates, our approach achieves the best perfor-
mance on all subsets compared with various baselines. LOF
seldom hits labels across the three subsets; iForest may over-
fit on the subsetB while has bad results on others; DBSCAN
performs better than iForest but yet not well enough. The
reason behind it is that outliers usually take a tiny propor-
tion and show distinct patterns with normal samples, where
suspicious users may gather into groups in the form of small
clusters instead of scattering away from normal ones in
the feature space. For Donut, DAGMM, and SRCNN, they
perform not ideally enough in our scenario. The training
data of Donut and DAGMM should better be clean normal
samples, and that of SRCNN should be confirmed gas-theft
labels together with clean normal samples. However, due to
the label scarcity of the realistic condition, boiler room users’
data is mixed by normal and unlabeled abnormal samples.
Such dirty data would degrade the performance of these
detection methods.

TABLE 3
Performance comparison with baselines

Method Company A Company B Company C
PR RC PR RC PR RC

LOF 0 0 0 0 0.006 0.2
iForest 0 0 0.026 1 0.012 0.4

DBSCAN 0.014 1 0.006 1 0.006 0.6
DONUT 0.015 1 0.003 0.5 0.003 0.4
DAGMM 0.010 1 0.009 1 0.003 0.6
SRCNN 0.030 1 0.004 1 0.006 0.6
SVOC 0.069 1 0.016 1 0.007 0.6

4.2.2 Comparison with TGSV Variants

As illustrated in Table 4, we compare TGSV algorithm with
its variants of different combinations of data transforma-
tion modules before calculating the ShapeV ar. Here, CP
stands for the continuity processing, WT for the wavelet
transformation, and PC for the phase calibration. Results tell
that the CP decreases misjudgments during holidays and
weekends significantly; based on that, the WT and the PC
diminish the false-positives caused by short-term vibrations
and response delay to the temperature. Therefore, we select
CP & WT & PC as the process of data transformation for
calculating the deformation ShapeV ar, which can further
reduce 40.6% misjudgments compared to that without these
data transformation modules. Overall, TGSV algorithm can
exclude 61.9% of boiler rooms as normal users.

TABLE 4
Comparison with different data transformation

#. suspects / #. hit thefts A B C Overall
584/4 781/2 1670/5 3035/11

- 396/4 503/2 1046/3 1945/9
CP 297/4 322/2 700/3 1319/9

CP & WT 252/4 308/2 640/3 1200/9
CP & PC 228/4 328/2 656/3 1212/9

CP & WT & PC (TGSV) 218/4 310/2 628/3 1156/9
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As shown in Table 5, we compare ShapeVar with three
commonly-used similarity measurements, Pearson after
same data processing and transformation. For these simi-
larity measurements, none of them performs well. Pearson
correlation and Euclidean distance do not consider the time
series’s internal temporal dependency, while DTW distance
cannot reflect the information we want by the single value.
Our TGSV algorithm defines a temperature-gas shape varia-
tion, named ShapeVar, characterizing both trend consistency
and value deviation to model the deformation correlation.

TABLE 5
Comparison with different similarity measurements

Method Company A Company B Company C
PR RC PR RC PR RC

Pearson 0.01 1 0.004 1 0.003 0.6
Euclidean 0.009 1 0.003 1 0.003 0.6

DTW 0.01 1 0.004 1 0.003 0.6
ShapeVar 0.018 1 0.006 1 0.005 0.6

4.2.3 Comparison with OCSVM variants
As illustrated in Table 6, we compare OCSCM model with
different combinations of three extracted features: gas con-
sumption features (GC), temperature-gas joint features (TG),
and boiler attribute feature (BA). The TG features can still
improve detection efficiency as it contains more information
than the TGSV algorithm. The GC features perform much
better than TG, very close to our best results, which indicates
the importance of this feature. While with only the GC
features, several labels are missed. By combining the GC
and TG features, we achieve a higher recall. Furthermore,
when incorporating the BA with GC and TG, it will further
improve the precision. Overall, our method can further
detect 21% users as gas-theft suspects with high recall.

TABLE 6
Comparison with different feature combinations

#. suspects / #. hit thefts A B C Overall
218/4 310/2 628/3 1156/9

TG 145/2 168/2 551/3 864/7
GC 55/3 127/2 401/1 583/6

TG & GC 76/4 127/2 556/3 759/9
GC & TG & BA 57/4 127/2 457/3 641/9

As for two-step methods presented in Table 7, the TGSV
algorithm can first tell normal users apart from abnormal
ones, then RF, GBDT, MLP, and VAE can be trained with
normal samples and predict on abnormal ones. In this way,
similarity-based algorithms and model-based algorithms
can integrate seamlessly. Since this task can be regarded as a
classification task, we compare OCSVM with several typical
classifiers. RF, GBDT, and MLP will distinguish the normal
and abnormal ones, while abnormal ones contain many
users with irregular patterns. In comparison with these
classifiers, OCSVM focuses on capturing normal patterns
and thus generally outperforms them. We also compare
OCSVM with VAE, since they both capture normal patterns.
Although VAE also models normal patterns, it performs not
well as it is confused with abnormal fluctuations and gas-
theft behaviors.

TABLE 7
Comparison with substitutes for OCSVM

Method Company A Company B Company C
PR RC PR RC PR RC

TGSV & RF 0.014 0.75 0.006 1 0.005 0.6
TGSV & GBDT 0.017 0.75 0.006 1 0.005 0.6
TGSV & MLP 0.017 1 0.006 1 0.004 0.6
TGSV & VAE 0.020 0.5 0 0 0.007 0.4

TGSV & OCSVM 0.069 1 0.016 1 0.007 0.6

4.3 Case Study
4.3.1 Detectable Anomalies
The detected anomalies can be categorized into four types
of cases as follows.

Against the common sense. It is common that the higher
the temperature is, the less the natural gas consumed to
supply heating, and vice versa. As Figure 15(a) illustrated,
in the red circle, the monotonicity of gas consumption is
following that of temperature. It means that the warmer it
is, the more heating supplied, which is contradictory to the
objective law.

Consumption lower than that under similar temper-
atures. For each boiler room with fixed facilities, the gas
consumption under similar temperatures should be on the
same level. As Figure 15(b) shows, within the two periods
inside red circles, the trend of gas consumption is roughly
consistent with that of temperature, whereas the volume of
gas consumption is lower than that under a similar level of
temperature before.

Varying seldom with the changing temperature. Since it
exists a strong negative correlation between gas consump-
tion and temperature. If the gas consumption of a boiler
room keeps on the same level regardless of the changing
temperature, it is impossible to satisfy the heating demand.
As Figure 15(c) demonstrated, except for several transient
increases, the gas consumption is approximately the same
as that at the beginning of the heating period.

Being turned down or shut down continuously. It is
tolerable that some boiler rooms are shut down occasionally
due to something exceptional or the need for maintenance.
However, it will turn into potential anomalies if this situa-
tion lasts for some time. As shown in Figure 15(d), around
Christmas, it appears a shutdown lasting for several days.
Then for about one week, the gas consumption keeps on a
visibly lower level than the normal condition. Both periods
do not belong to the Chinese official holidays.

4.3.2 Undetectable Anomalies
As mentioned in Section 4.2, there exist two labels that
neither our method nor baselines can hit. Their gas con-
sumption data fits the opposite temperature exactly, which
is similar to normal users. We contact the gas company to
investigate the reasons behind it. According to the feedback,
the two boiler rooms steal gas by the same means. They
connect pipes before meters without permission, which
will not affect their gas consumption data. Naturally, our
data-driven approach cannot help to detect such gas-theft
behaviors. Thus, if a user only behaves abnormally in the
magnitude of usage while behaves normally in cyclic be-
havior, the data-driven approach still can not help.
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(a) Against the common sense (b) Lower than temperature

(c) Seldom varying along time (d) Continuously turned down

Fig. 15. Categories of detectable anomalies

4.3.3 Detected Suspicious Users
As concluded in Table 6, our approach detect about 21% gas-
theft suspects among all boiler rooms, which is reasonable
considering the actual situation. Firstly, our dataset covers
one whole heating season lasting for four months, where
experiments are conducted in an offline scenario with lim-
ited gas-theft labels. Secondly, the data collected by sensors
are incomplete due to the realistic physical condition, where
much work can be done by the gas company staff to main-
tain the data quality. Last but not least, gas consumption
patterns are diverse for all the boiler room users, for which
we need to trade off between individuality and generality.

5 GASSHIELD SYSTEM

We have developed a real-time system on the cloud, entitled
GasShield, providing the daily user classification of boiler
rooms. Figure 16 illustrates the system interface, consisting
of two panels: 1) Overview , which display the user statistics
and gives the anomaly type distribution based on daily
predicted results; 2) Suspicious Users List, which lists the
detected suspicious users so that operators can conduct
more targeted on-site inspections. The user can click the
view button to visualize the curve of gas consumption data
and temperature data and click the download button to
download the suspects’ list.

Here, we extend our proposed approach to an online sys-
tem running every day, where we use the sliding window
to extract data of the past 15 days for each detection. Con-
sidering newly inspected gas-theft labels, we re-trained the
OCSVM model and adjusted the threshold for TGSV model
every month. After transferring to the online scenario, the
proportion of daily suspects decreases to ∼1.5%.

After deploying the system in Beijing Gas Group Co.,
Ltd., the gas company’s staff conduct an on-site inspection
based on the detection results during the 2019-2020 heating
season. After inspecting 52 suspicious boiler rooms, they
found that all users have some problems. As a result, the
44% users belong to the data-abnormal users, 48% users are
irregular users, and 8% users are confirmed gas-thefts. With
this system, the potential suspects could be discovered in
the early stage with higher accuracy.

Fig. 16. User interface of GasShield system.

6 RELATED WORK

6.1 Gas-Theft Suspect Detection
Fighting against gas stolen behaviors is a vital task for gas
companies. The way to find out gas stolen behavior requires
on-site field inspection, where the staff of gas companies
mainly carries out the action during meter charging, mea-
surement operation, and maintenance inspections. Hence,
it costs lots of human resources and exists randomness
and hysteresis. Different from that, we propose a data-
driven approach to detect gas-theft suspects of boiler rooms.
Thus, the potential gas theft suspects could be known early-
stage with more accuracy while significantly reducing the
workforce cost and increasing efficiency. Beside boiler room
users, we also proposed another data-driven approach to
detect gas-theft suspects among restaurant users [15]. To the
best of our knowledge, our proposed methods are the first
data-driven approaches instead of manual inspections.

6.2 Utility Fraud Detection
Utility fraud is a common issue for the energy industry (e.g.,
electricity, water). Many detection techniques have been
proposed, which can be divided into hardware solutions
and non-hardware ones [16]. Hardware solutions focus on
preventing users’ fraudulent behaviors by protecting meters
[17], [18], while they are rather costly in equipment. Non-
hardware solutions are mostly data-driven with energy con-
sumption data, where classification-based techniques [19],
[20], [21] and clustering-based methods [22], [23] are com-
monly adopted. However, it is hard to collect fully labeled
data in real-life datasets for classification-based methods.
And it is hard to tell whether minor clusters or outliers
out of formed clusters are indeed fraudulent for clustering-
based methods. Unlike these methods, we first calculate
the temperature-gas shape variation to detect normal boiler
rooms. Then, we adopt OCSVM to capture multiple charac-
teristic factors for detecting gas-theft suspects.

6.3 Anomaly Detection Methodology
Similarity-based approaches and model-based approaches
are widely used in the field of time series anomaly detection
[24]. For similarity-based approaches, it mainly chooses
a proper similarity measurement and identifies anomalies
based on the similarity or dissimilarities between data sam-
ples, e.g., as measured by Euclidean distances or Pearson
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correlation [25]. Model-based approaches [26] mainly de-
pend on the features extracted from original data to learn
a hyper-plane for splitting the anomalies (e.g., OCSVM),
minimize the reconstruction error of normal samples (e.g.,
VAE [27], Donut [12], DAGMM [13]) or treat it as a classifi-
cation problem (e.g., SRCNN [14]). Different from that, we
combine the similarity-based and model-based algorithms,
which are seamlessly integrated for overcoming the label
sparsity problem and achieve better accuracy.

6.4 Urban Anomaly Detection Application
Several previous works focus on detecting anomalies in the
urban computing scenario [28] with the cross-domain data
fusion methods [29]. Chawla et al. infer the root cause of
road traffic anomalies with Principal Component Analysis
[30]. Borges et al. monitor the urban infra-structure consid-
ering the heterogeneous attributes and relationships in the
data [31]. Zhang et al. detected urban anomalies with multi-
ple spatio-temporal data sources [32]. Du et al. developed
an anomaly detection system for identifying pickpocket
suspects with transit records [33]. Furthermore, Zhao et al.
detected pickpocketing gangs on buses with a graph-based
community detection [34]. He et al. detected vehicle illegal
parking events using sharing bikes’ trajectories [35]. Most
of these methods are designed to detect anomalies for the
traffic flow and crowd using the human movement data.
Unlike these scenarios, we detect the gas-theft suspects in
the urban infrastructures of gas supply.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a data-driven approach SVOC to
detect gas-theft suspects of boiler rooms. In this way, gas-
theft suspects can be discovered in the early stage with
higher accuracy. Considering the temporal proximity be-
tween gas consumption and temperature, we first calculate
the temperature-gas deformation variation to detect the
normal and abnormal boiler rooms. Based on the detection
results, the OCSVM based algorithm captures the differ-
ent characteristic factors across multiple data sources for
detecting gas-theft suspects. We conduct experiments on a
real-world dataset covering one heating season, where the
results demonstrate advantages of our approach. With the
normality detection algorithm TGSV, we can exclude 62%
boiler rooms as normal users; with the anomaly detection
algorithm, we can further detect 21% boiler rooms as gas-
theft suspects with high recall. We have developed a real-
time system on the cloud, providing daily gas-theft suspects
for gas companies.

In the future, we will upgrade our system to improve
detection accuracy, collaborating with gas companies’ staff
on the feedback of inspections and maintenance records.
Besides, we want to generalize our method to more types
of gas users and other utility fraud detection tasks.
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